173 research outputs found

    Superconducting Electronic Devices

    Get PDF
    Contains reports on two research projects.Defense Advanced Research Projects Agency Contract MDA 972-90-C-002

    Dynamical decoupling and dephasing in interacting two-level systems

    Full text link
    We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubit's transition frequency relative to the two-level system, we realize a refocusing pulse that reduces dephasing due to fluctuations in the transition frequencies, thereby improving the coherence time of the entangled state. The coupling coherence is further enhanced when applying multiple refocusing pulses, in agreement with our 1/f1/f noise model. The results are applicable to any two-qubit system with transverse coupling, and they highlight the potential of decoupling techniques for improving two-qubit gate fidelities, an essential prerequisite for implementing fault-tolerant quantum computing

    Mach-Zehnder Interferometry in a Strongly Driven Superconducting Qubit

    Full text link
    We demonstrate Mach-Zehnder-type interferometry in a superconducting flux qubit. The qubit is a tunable artificial atom, whose ground and excited states exhibit an avoided crossing. Strongly driving the qubit with harmonic excitation sweeps it through the avoided crossing two times per period. As the induced Landau-Zener transitions act as coherent beamsplitters, the accumulated phase between transitions, which varies with microwave amplitude, results in quantum interference fringes for n=1...20 photon transitions. The generalization of optical Mach-Zehnder interferometry, performed in qubit phase space, provides an alternative means to manipulate and characterize the qubit in the strongly-driven regime.Comment: 14 pages, 6 figure

    A tunable coupling scheme for implementing high-fidelity two-qubit gates

    Full text link
    The prospect of computational hardware with quantum advantage relies critically on the quality of quantum gate operations. Imperfect two-qubit gates is a major bottleneck for achieving scalable quantum information processors. Here, we propose a generalizable and extensible scheme for a two-qubit coupler switch that controls the qubit-qubit coupling by modulating the coupler frequency. Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime, which is non-invasive to the qubit states. We investigate the performance of the scheme by simulating a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence hardware, thereby promising a higher gate fidelity with current technologies

    Resonant Readout of a Persistent Current Qubit

    Full text link
    We have implemented a resonant circuit that uses a SQUID as a flux-sensitive Josephson inductor for qubit readout. In contrast to the conventional switching current measurement that generates undesired quasi-particles when the SQUID switches to the voltage state, our approach keeps the readout SQUID biased along the supercurrent branch during the measurement. By incorporating the SQUID inductor in a high-Q resonant circuit, we can distinguish the two flux states of a niobium persistent-current (PC) qubit by observing a shift in the resonant frequency of both the magnitude and the phase spectra. The readout circuit was also characterized in the nonlinear regime to investigate its potential use as a nonlinear amplifier.Comment: 4 pages, 2004 ASC Proceeding

    Lower bounds in distributed computing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 167-170).Distributed computing is the study of achieving cooperative behavior between independent computing processes with possibly conflicting goals. Distributed computing is ubiquitous in the Internet, wireless networks, multi-core and multi-processor computers, teams of mobile robots, etc. In this thesis, we study two fundamental distributed computing problems, clock synchronization and mutual exclusion. Our contributions are as follows. 1. We introduce the gradient clock synchronization (GCS) problem. As in traditional clock synchronization, a group of nodes in a bounded delay communication network try to synchronize their logical clocks, by reading their hardware clocks and exchanging messages. We say the distance between two nodes is the uncertainty in message delay between the nodes, and we say the clock skew between the nodes is their difference in logical clock values. GCS studies clock skew as a function of distance. We show that surprisingly, every clock synchronization algorithm exhibits some execution in which two nodes at distance one apart have Q( lo~gD clock skew, where D is the maximum distance between any pair of nodes. 2. We present an energy efficient and fault tolerant clock synchronization algorithm suitable for wireless networks. The algorithm synchronizes nodes to each other, as well as to real time. It satisfies a relaxed gradient property. That is, it guarantees that, using certain reasonable operating parameters, nearby nodes are well synchronized most of the time. 3. We study the mutual exclusion (mutex) problem, in which a set of processes in a shared memory system compete for exclusive access to a shared resource. We prove a tight Q(n log n) lower bound on the time for n processes to each access the resource once. .(cont.) Our novel proof technique is based on separately lower bounding the amount of information needed for solving mutex, and upper bounding the amount of information any mutex algorithm can acquire in each step. We hope that our results offer fresh ways of looking at classical problems, and point to interesting new open problemsby Rui Fan.Ph.D

    Distinguishing coherent and thermal photon noise in a circuit QED system

    Get PDF
    In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a variety of sources, such as thermal radiation, leftover measurement photons, and crosstalk. Using a capacitively-shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons, rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1T_1-limited spin-echo decay time. The spin-locking noise spectroscopy technique can readily be applied to other qubit modalities for identifying general asymmetric non-classical noise spectra
    • …
    corecore